AIR MINISTRY

GREAT BADDOW

RESEARCH REPORT

$$
T R .488 \quad \text { m. Highcock }
$$

Air Ministry, Great Baddow Research Station, - Nr. Chelmsford,

Essex.

HEIGHT-GAIN TESIS IN THE TROPOSPHERE.
July, 1944.
$44 / 3959$ Introduction.

An urgent need for prediction of ranges for V.H.F. navigational aids has been expressed by Operational Cominands and an intensive research into the prediction of the meteorological conditions, upon which the range of V.H.F. waves so much depends, is being carried out.

The meteorological conditions affect the propagation in so far as they control the variation of the refractive index of the atmosphere with height above ground.

One way in which the refractive index law affects the propagation is in the nature of the height-gain relations at any given distance beyond the horizon.

It is well known that the variation of field strength with height above ground can be greatly modified when there is marked anomalous propagation associated with the formation of a sufficiently tall duct. A direct measurement of the height-gain relationship should therefore give an immediate indication of the existence of abnormal conditions, when the usual increase of field strength with height typical of pure diffraction would be modified. From the nature and degree of the modification it should be possible to assess the refractive index law and its effect on the range of V.H.F. signals received at any given height.

The height-gain relationship should therefore provide a direct and useful indication of propagation conditions.

Mr. Eckersley considered that regular aircraft flights could be made to measure the change in field strength with height at one or more distances below the horizon from a fixed transmitter, analogous to the regular flights now made to obtain meteorological data. Permission was granted by the Air Ministry for some initial experimental flights to be undertaken by 192 Squadron in order to explore the feasibility of the method and the possibility of interpreting the results in relation to range predictions.

This report will deal only with the practical work involved, the conditions under which the measurements were made and the tabulation of the data obtained.

A further report will be made by the Eckersley Group dealing with the analysis and interpretation of the data obtained.

Six experimental flights, under the direction of Mr. Eckersley, were made between January and April of this year, using a frequency of $200 \mathrm{Mc} / \mathrm{s}$.

Equipment.
(a) Receiver.

A modified Hallicrafter S. 27 CA was used for all these test flights.
The major modification to be made was the insertion of a suitable signal strength measuring device.

A piston type attenuator was inserted in series with the aerial feeder. The particular attenuator available had been designed for 75 ohms
and was therefore suited to one of the standard flexible concentric cables used on aircraft.

As it was hoped to measure field strength variations of the order of 80 decibels it was obviously necessary to pay great attention to the screening of the receiver.

The S.27.CA was therefore taken out of its standard bex and put in a 16 S.W.G. brass box with ventilation vents of close mesh brass gauze.

The aerial input to the receiver was modified to an unbalanced circuit by means of a standard Air Ministry socket, the earth portion of the socket being directly connected to the receiver chassis.

The attenuator was fitted on a sloping panel on top of the receiver.

The preliminary laboratory tests showed that the attenuator introduced an insertion loss of 25 dBs . between aerial and receiver input.

In order to reduce this loss to a reasonable value the two electrodes of the piston were arranged to touch in the lowest attenuation position giving an insertion loss of 7 decibels which was considered reasonable; in consequence linear movement of the attrnuator dial was sacrificed. To make the lower values of attenuation readable the scale was opened out by a series of gears free from back-lash and an $8^{\prime \prime}$ dial used for calibration.

One decibel variation at the lower end of the scale gave a dial movement from the pointer of $I / 8^{\prime \prime}$, at the 20 dBs . position the movement opened out to $\frac{1}{2}$ ", from then on the movement was substantially linear. By a double rotation of the dial a variation between 0 and 80 dBs . was obtained.

The method of calibrating the attenuator was simply to connect a standard signal generator to the feeder in place of the aerial and vary the generator output by the wanted amount and change the attenuator dial position to bring the receiver output back to a reference level. This calibration was cross-checked with the aid of a test signal injection box and dummy aerial.

The injection box was a very simple unit consisting of a caged portion of the inner conductor of the feeder into which the generator, terminated by a 75 ohm resistance, injected a test signal. This unit was very useful in adjusting and checking the aerial and also in checking the receiver sensitivity on the aircraft.

The diode 2nd detector of the receiver was used as a source of D.C. signal supply to a Cossor Cathode Ray Oscilloscope unit.

During the first test flight it was found that the screening of the receiver was still far from perfect. Further investigation in the laboratory showed that the metal frequency indicating dial of the receiver was responsible for most of the unwanted pick up, this was suppressed by inserting a specially designed spring washer between the dial and panel. Similar spring washers had to be fitted to most of the protruding spindles on the panel.

An appreciable amount of unwanted signal was introduced into the set by the power mains lead and the output lead to the oscilloscope. Suitable filters had to be inserted in each of these leads and the leads screened.
(b) Transmitter.

A standard CD/CHL pulse transmitter working on a frequency of $200 \mathrm{Mc} / \mathrm{s}$. was installed at the A / M transmitting station at Stock four miles south of Chelmsford.

A 70 ft , wooden lattice tower was available on the site and a simple vertical dipole installed at the top of it. The aerial was carefully lined up and the usual checks made for standing waves on the 200 ohm balanced feeder connecting the transmitter fo the aerial.

The transmitter was capable of radiating about 25 kilowatts peak power.

During the first test flight a pulse width of 4 microseconds was used with a P.R.F. of 500. An interval signal was incorporated in the modulator for the purpose of identification.

From the results of the first flight it was considered that a gain of 15 dBs . was necessary to do the tests well. It was obviously impracticable to raise the transmitter power to this extent so it was decided to widen the transmitted pulse in order to give the S.27.CA receiver a better chance to accept it. The P.R.F. was reduced to 50 to conserve the power available to the transmitting valve anodes.

Extra capacities were banked on to the anode and grid pulse forming circuits and a new modulator was made; under these new conditions a pulse width of 15 microseconds was obtainable, this increased pulse width gave an effective $12-13 \mathrm{dBs}$. gain at the output of the receiver.

During the second test flight it was found that due to the great number of pulse stations working on or around $200 \mathrm{Mc} / \mathrm{s}$. with P.R.F's between 150 and 400 the 50 P.R. F. was rather difficult to find although once the C. R.O. time base had been synchronised it was easy to hold. Therefore for the third test it was decided to increase the P.R.F. as far as possible without decreasing the power output of the transmitter. The receiver to be used on the test was set up 4 miles from the transmitter and the P.R.F. increased until the received signal strength commenced to decrease, this point occurred at a P.R.F. of 200 and this condition was used for the remaining four tests.

Installation of equipment on the aircraft.
192 Squadron, R.A.F. kindly allocated a Wellington aircraft for these tests.

Supplies for the receiver and C.R.O. were obtained from a rotary converter driven by the aircraft's floating accumulators. The output from the converter was 230 volts 50 cycle A.C.

The aerial used was a $\frac{1}{4}$ wave vertical rod with a 2 feet square brass plate at the bottom end; an insulator was inserted in the centre of the plate to support the aerial.

The brass plate aas bolted on to the geodetic of the aircraft and located just aft of the astro-dome. Special attention was paid to bonding the equipment to the aircraft structure.

The equipment was installed immediately beneath the aerial. The aerial was adjusted and the sensitivity of the receiver checked before each flight by means of the injection box mentioned previously.

Special Meteorological Equipment.
After the first two flights it was decided that meteorological data taken during the flight was necessary, therefore an aneroid barometer and a psychrometer were borrowed from an R.A.F. Meteorological Station.

The aneroid barometer was mounted on a sprung base-board and installed inside the aircraft near the starboard waist window.

The psychrometer was installed outside the aircraft near the starboard waist window in such a way that the dry and wet bulbs of the thermometers could be read by an operator in the waist of the aircraft.

The position of the psychrometer in respect to the slip stream of the aircraft was fully discussed with the Meteorological Station and it was their opinion that the position was satisfactory.

Method of making signal measurements.
Several methods of making signal measurements were tried in the laboratory and the one finally adopted was the method of adjusting the attenuator so that the signal just came down to set noise. Readings of the order of $\pm 0.5 \mathrm{dBs}$. could be repeated even with different operators. This method proved quite satisfactory in the air.

Before each flight the watches of the navigator and the special operator were synchronised. The special operator, took readings each minute, and during some periods every half minute, throughout the flight and the data analysed afterwards with the aid of the navigators log.

The meteorological instruments were read at the appropriate heights. Reliability of measurements.

There is evidence to suggest that the measurements taken are remarkable reliable.

It will for instance be noted, upon reference to the data sheets, that during the flight of the $22 / 4 / 44$ three straight runs were made at $10,000 \mathrm{ft}$, the average reading for each run was $28.5,29.2$, and 28.8 dBs . respectively. Each of these values was the average of five to six readings.

The worst divergence of individual readings from the average was less than $\pm 2 \mathrm{dBs}$.

The averages of the three straight runs at $10,000 \mathrm{ft}$. on the 25/4/44 are equally good.

Only two straight runs at $10,000 \mathrm{ft}$. were made on the $20 / 4 / 44$ and 23/4/44 but here again extrenely close agreement exists.

Throughout each test the transmitter was monitored on a second receiver located on the ground four miles from the transmitter. First Test Flight 27/1/44.

The first test flight was very much in the nature of trying out the equipment and the general conditions under which the tests were to be carried out and to find out what modifications to equipment, test conditions, and programme had to be made for future tests.

When the tests were planned it was considered possible to make the height gain tests over the 192 Squadron's airfield in Norfolk but upon investigating the ground contour along the signal path it was realised that a very high hill was directly in the signal path and only one mile from the transmitter.

The only free routes away from the transmitter were due east and west north west. The east route was ruled aut owing to the proximity of enemy occupied territory. Accordingly the air-crew was briefed to fly from their base in Norfolk to Chelmsford to Buckingham at a constant height of 2,000 feet. At Buckingham the aircraft was to spiral up to $10,000 \mathrm{ft}$. and at that height to patrol between Bicester and Towcester on a steady compass bearingi; the line joining these two places is at right angles to the line joining Chelmsford and Buckingham, therefore the aircraft was flying on an equidistant course from the transmitter. After the aircraft had completed the $10,000 \mathrm{ft}$. straight run it was to fly back to Bicester and run in again on the same patrol course at $9,000 \mathrm{ft}$. and maintain that height throughout that run.

After each patrol the aircraft was to descend 1,000 ft. until it reached $4,000 \mathrm{ft} .$, it was then to descend in 500 feet stages down to 500 feet.

The attached track chart shows the route taken and the method of timing for correlating signal measurements.

During this test flight it was confirmed that the Norfolk Chelmsford route was completely unsuitable for the tests planned and that the Chelmsford - Buckingham route was satisfactory.

The signal measurements between Chelmsford and Buckingham give a good idea of the attenuation along the route. Although this did not form part of the original programme it was included in each test as it was obviously of general interest.
. The Height-Gain measurements and the attenuation measurements have been tabulated on an appended sheet.

It will be seen that the measurements made during the spiral climb are very erratic, due without a doubt to the polar diagram of the aerial being affected by different positions of the aircraft in respect to the transmitter and by the tilting of the aerial while banking.

The step by step straight run Height-Gain measurements were quite reliable.

It is pointed out that the measurements for the $27 / 1 / 44$ test have all been corrected by +12 dBs . (the gain obtained by increasing the pulse width after the first test) in order that they may be readily compared with the remaining five tests.

All curves have been plotted on a linear scale and are shown on a separate sheet so that they may be compared easily one with the other. All distances and heights have been converted to kilometers and metres to facilitate the analysis of the data.

Second Test Flight 29/2/44.

Necessary modifications to the equipment were made between the first and second test flights. For the second flight it was considered necessary to make the Height-Gain measurements at a greater distance in order to make sure that the aircraft went well beyond the horizon; the patrol line was therefore in the Leamington area.

It is of great interest to note that the signal on this occasion could not be found above about $6,000 \mathrm{ft}$. during the spiral climb and was picked up again during the descent at about $7,000 \mathrm{ft}$.

The discrepancy between these two heights may be explained by the fact that the rate of climb was assumed to be constant whereas it probably fell off towards the higher levels; the level at which the signal dropped out was therefore probably nearer $7,000 \mathrm{ft}$. during the aseent.

The cut-off of the signal was extremely sharp as also was the reappearance on the descent. Although no measurements were possible it is almost certain that the signal went through this violent change in about 200-250 feet change in altitude.

Upon analysing the meteorological report for that day it was found that wide-spread temperature inversions occurred throughout most of the day in the region of $7,000 \mathrm{ft}$. An extract from the meteorthogical report for this day is attached.

Test Flights $20 / 4 / 44,22 / 4 / 44,23 / 4 / 44,25 / 4 / 44$.
These four flights were made under the same conditions and on the same route and can therefore be reported upon collectively.

The P.R.F. had been raised from 50 to 200 for these tests in order to make the signal more easily readable amongst the numerous pulse stations on the same radio frequency.

The meteorological instruments mentioned previously were installed in the aircraft for these tests and readings were taken only as the straight run patrols during the step by step descent.

In order to save time on the flight it was thought possible to make each alternate height-gain straight run on the reciprocal compass bearing; in other words the $9,000,7,000,5,000$ etc. feet runs were made on the reciprncal compass bearing to that on which the $10,000,8,000$, 6,000 etc. feet runs were made.

A check was made at $10,000 \mathrm{ft}$. on each flight to see if this was permissible; therefore two or three runs were made at l,000 ft. flying in opposite directions and of course still at right angles to the line joining the patrol area and the transmitter.

On each occasion the method was perfectly satisfactory and extremely close agreement of readings was obtained as already stated.

A further modification to the programme of these tests was that when the signal was lost at the end of the attenuation run at $2,000 \mathrm{ft}$. the aircraft was to descend to 500 ft . to check whether signals could be picked up again at a lower altitude; no evidence was obtained that this was the case.

It will be noticed upon reference to the set of height-gain curves that a marked "ledge" occurs between 7,000 and $9,000 \mathrm{ft}$. on the 20th, 22nd and 23rd of April.

In all these tests it will be seen that the measurements made during the spiral climb are too erratic to be made use of

Conclusion.

The Eckersley Group desire to express their gratitude for the whole-hearted cooperation and help of Wing Commander Willis D.S.O., D.F.C. formerly commanding 192 Squadron; Wing Commander Fermbank D.F.C. commanding 192 Squadron; Sq/Ldr. Mazdon and his Special Signals Section also of 192 Squadron; and the many Aircrews who carried out so well the very tedious flights.
-

Symbols used in report.

T	$=$	Time in B.S.T.
Kms.	$=$	Kilometres.
TX.	$=$	Transmitter.
Hm.	$=$	Height in metres.
Temp.	$=$	Temperature in degrees F.
Hum.	$=$	Humidity in $\%$.
mbs.	$=$	Millibars.

Inclusions.
1 Six sheets of tabulated attenuation and height-gain readings.
One sheet of meteorological readings.
One sheet of attenuation and height gain curves.
One track chart.
One extract from the meteorlogical report $29 / 2 / 44$.

GAI/JOB.

Height-Gain Tests in the Troposphere. $\quad 27 / 1 / 44$.

Height-Gain Tests in the Troposphere. 29/2/44.

Attenuation.				Height-Wain.			
T.	$\begin{aligned} & \text { Kms. } \\ & \text { from TX. } \end{aligned}$	dBs.	Hm.	T.	Kms. from TX.	dBs.	Hm .
1031	0	54	600	1105	148	-	600
1032	4.65	51	"	1106	"	-	750
1033	9.3	53	"	1107	"	-	900
1034	14.0	51	"	1108	"	16	1050
1035	18.6	49	H	1109	"	N.R.	1200 Spiral
1036	23.2	48	"	1110	"	16	1350
1037	27.9	45	"	1111	"	27	1500
1038	32.6	45	"	1112	"	23	1650 Climb
1039	37.2	43	"	1113	"	22	1800
1040	41.8	42	"	1114	"	-	1950
1041	46.6	41	"	1115	"	-	2100
1042	50.6	38	"	1116	"	-	2250
1043	54.6	39	"	1117	"	-	2400
1044	58.6	38	"	1118	"	-	2550
1045	62.6	33	"	1119	"	-	2700
1046	67.4	35	"	1120	"	-	2850
1047	72.2	33	"	1121	"	-	3000
1048	77.0	29	"				
1049	81.8	28	"	T1/	Kms .	Average	
1050	86.6	25	"	T2.	from TX.	dBs.	Hm .
1051	91.4	24	"				
1052	96.2	22	"	1121			
1053	101.0	19	"	1127	148	-	3000
1054	105.8	15	"	1135			
1055 1056	110.6	15	"	1140	"	-	2700
1056	114.3 118.0	14	"				
1058	118.0	10	"	1153	"	-	2400 Straight
1059	125.4	10	"				
1100	132.8	7	"	$\begin{aligned} & 1154 \\ & 1200 \end{aligned}$	"	25	2250 Av. R .
11102	136.5	-	"				
1103	140.2	-	"	1201			
1104	143.9	-	"	1207	"	19	2100
1105	147.6	-	"	1214			
				1218	"	17.6	1800
	-			$\begin{aligned} & 1228 \\ & 1233 \end{aligned}$	"	15	1500
				$\begin{aligned} & 1234 \\ & 1242 \end{aligned}$	"	12.5	1350 Av. H.
				$\begin{aligned} & 1243 \\ & 1247 \end{aligned}$	"	-	1200
				$\begin{aligned} & 1255 \\ & 1300 \end{aligned}$	"	-	1050
				$\begin{aligned} & 1309 \\ & 1312 \end{aligned}$	"	-	900
				$\begin{aligned} & 1321 \\ & 1326 \end{aligned}$	"	-	750
GAI/JOB.							

Height-Gain Tests in the Troposphere. $20 / 4 / 44$.

Height-G̈ain Tests in the Troposphere. 22/4/44.

Attenuation.				Height-Gain.				
T.	Kms. from TX.	dBs.	Hm .	T.	Kms . from TX.	dBs.	Hm .	
1300	4.8	53	600	1338	154	-	150	
1301	6.4	56	"	1339		-	290	
1302	9.6	49	"	1340	"	-	435	
1303	12.8	54	"	1341	"	-	585	
1304	16.0	47	"	1342	"	-	720	
1305	19.2	41	"	1343	"	10	865	
1306	24.6	41	"	$1343 \frac{1}{2}$ 1344	"	18	930 1000	Sprixsl
1307	28.7	38	"	1344	"	15	1000	Sprixul
1308	32.8	38	"	1344震	"	15	1020	
1309	36.9	37	"	1345	"	17	1150	
1310	40.1	32	"	$1345 \frac{1}{2}$	"	21	1200	Climb
1311	44.2	30	"	1346	"	17	1290	
1312	49.3	27	"	$1346 \frac{1}{2}$	"	22	1350	
1313	53.4	28	"	1347	"	24	1460	
1314	57.4	27	"	$1347 \frac{1}{2}$	"	23	1500	
1315	61.5	23	"	1348	"	21	1570	
1316	65.6	19	"	$1348 \frac{1}{2}$	"	24	1650	
1317	69.7	21	"	1349	"	25	1730	
1318	73.8	16	"	$1349 \frac{1}{2}$	"	23	1730	
1319	77.9	15	"	1350	"	25	1850	
1320	82.0	13	"	$1351{ }^{\circ}$	"	26	2000	
1321	86.1	13	"	1352	"	22	2140	
1322	90.2	12	"	1353	"	23	2280	
1323	94.3	10	"	1354	"	20	2430	
1324	98.4	8	"	1355	"	24	2570	
1325	102.5	6	"	1356	"	23	2720	
1326	106.6	6	"	1357	"	30	2850	
1327	110.7	-	"	1358	"	22	3000	
1328	114.8	-	"					
1329	118.9	-	"	T1/	Kms.	verage		
1330	123.0	-	"	T2.	from TX.		Hm.	
1331	127.1	-	"					
1332	131.2	-	" 150	$\begin{aligned} & 1359 \\ & 1401 \end{aligned}$				
1333	135.3	-	150		154	28.5	3050	
1334	139.1	.-	"	1402				
1335	142.9	-	"	1406	"	29.2	3050	
1336	146.7 150.5	-	"	1407				
1338	154.3	-	"	1412	"	28.8	3050	
1358				$\begin{aligned} & 1413 \\ & 1420 \end{aligned}$	"	22	2740	Straight
				$\begin{aligned} & 1421 \\ & 1428 \end{aligned}$	"	22	2430	Run
				$\begin{aligned} & 1429 \\ & 1436 \end{aligned}$	"	22	2130	
				$\begin{aligned} & 1437 \\ & 1444 \end{aligned}$	"	17	1830	
				$\begin{aligned} & 1445 \\ & 1452 \end{aligned}$	"	13	1530	
				$\begin{aligned} & 1453 \\ & 1458 \end{aligned}$	"	7.5	1220	
				$\begin{aligned} & 1459 \\ & 1507 \end{aligned}$	"	-	920	
				$\begin{aligned} & 1508 \\ & 1514 \end{aligned}$	"	-	600	
				$\begin{aligned} & 1515 \\ & 7521 \end{aligned}$	"	-	300	
				$\begin{aligned} & 1522 \\ & 1526 \end{aligned}$	"	-	150	

Height-Gain Tests in the Troposphere. 23/4/44.

Attenuation.				Height-Gain.				
T.	Kms. from TX.	dBs.	Hm .	T.	Kms. from TX.	dBs.	Hm.	
1200	2	54	600	1234	147	-	150	
1201	6.3	61	600	1235	1	-	420	
1202	10.6	53	"	1235 ${ }^{\frac{1}{2}}$	"	-	540	
1203	14.9	49	"	1236	"	-	660	
1204	19.2	47	"	$1236 \frac{1}{2}$	"	-	780	Spiral
1205	23.5	45	"	1237	"	-	900	Spiral
1206	27.8	42	"	$1237 \frac{1}{2}$	"	12	1040	
1207	32.1	38	"	1238	"	15	1140	
1208	36.4	40	"	1238 $\frac{1}{2}$	"	16	1260	Climb
1209	40.7	39	"	1239	"	15	1380	
- 1210	45.0	37	"	$1239 \frac{1}{2}$	"	15	1500	
1211	49.3	35	"	1240	,	18	1620	
1212	53.6	32	"	$1240 \frac{1}{2}$	"	22	1740	
1213	57.9	33	"	1241	"	16	1860	
1214	62.2	30	"	1241 $\frac{1}{2}$	"	19	1980	
1215	66.5	28	"	1242	"	26	2100	
1216	70.8	26	"	1242 $\frac{1}{2}$	"	26	2200	
1217	75.1	27	"	1243	"	21	2340	
1218	79.4	24	"	1243嘒	"	29	2460	
1219	83.7	23	"	1244	"	31	2580	
1220	88.0	21	"	1244 $\frac{1}{2}$	"	28	2700	
1221	92.3	19	"	1245	"	31	2820	
1222	96.6	19	"	1245- ${ }^{\frac{1}{2}}$	"	26	2940	
$\begin{aligned} & 1223 \\ & 1224 \end{aligned}$	100.8	16	"	1246	"	22	3050	
1224	105.1 108.4	15 15	"	TI/	Kms.	Average		
1226	112.7	12	"	T2.	from TX.	dBs.	Hm .	
1227	117.0	11	"					
1229	121.3	7	"	1250				
	125.6	-	"	1254	147	29.6	3050	
1230	129.9	-	150					
$\begin{aligned} & 1231 \\ & 1232 \end{aligned}$	134.2 138.5	-	"	1300	"	29.5	3050	
	138.5	-	"			2.	3050	
1233	142.8	-	"	1301		.		
1234	147.1	-	"	1307	. 1	24.5	2740	Straight
				$\begin{aligned} & 1308 \\ & 1313 \end{aligned}$	"	. 24.6	2430	
				$\begin{aligned} & 1314 \\ & 1318 \end{aligned}$	"	24.0	2130	Run
				$\begin{aligned} & 1319 \\ & 1325 \end{aligned}$	"	22.5	1830	
				$\begin{aligned} & 1326 \\ & 2332 \end{aligned}$	"	16	1530	
				$\begin{aligned} & 1333 \\ & 1338 \end{aligned}$	"	14.5	1220	
				$\begin{aligned} & 1340 \\ & 1345 \end{aligned}$	"	5	920	
				$\begin{aligned} & 1346 \\ & 1349 \end{aligned}$	"	-	600	
				$\begin{aligned} & 1350 \\ & 1355 \end{aligned}$	"	-	300	
				$\begin{aligned} & 1356 \\ & 1400 \end{aligned}$	11	-	150	

Height-Gain Tests in the Troposphere. 25/4/44.

Attenuation.				Height-Gain.				
	Kms. from TX.	dBs.	Hm .	T.	Kms. from TX.	dBs,	Hm .	
1559룰	. 4.75	64	600	1632	140	-	150	
$1600{ }^{\text {2 }}$	- 9.5	50	"	1633	"	-	400	
1601	14.2	61	"	1634	"	-	650	Spiral
1602	19.0	46	"	1635	"	7	900	Spiral
1603	23.8	47	"	1636	"	7	1140	
1604	28.5	45	"	$1636 \frac{1}{2}$	"	10	1260 1400	
1605	33.2	42	"	1637	"	11	1400	
1606	38.0	41	"	$1637 \frac{1}{2}$	"	13	1530	
1607	42.7	42	"	1638	"	14	1650	Climb
1608	47.5	36	"	$1638 \frac{1}{2}$	"	12	1760	
1609	. 52.2	37	"	1639	"	15	1900	
1610	57.0	32	"	1639 年	"	15	2010	
1611	61.8	26	"	1640	"	20	2140	
1612	66.5	23	"	$1640 \frac{1}{2}$	"	15	2260	
1613	71.2	25	"	1641	"	19	2400	
1614	76.0	25	"	16412	"	15	2500	
1615	79.4	19	"	1642	"	21	2640	
1616	82.9	21	"	$1642 \frac{1}{2}$	"	20	2700	
1617	86.3	19	"	1643	"	23	2890	
16181619	89.8	18	"	$1643 \frac{1}{2}$	"	22	3050	
	93.3	16	"					
16201621	96.7	11	"	T1/	Kms.	Average		
	100.2	10	"	T2.	from TX .	dBs .	Hm .	
1622 1623	103.6 107.1	9	"	1644				
1624	110.6	6	"	1648	140	24.8	3050	
1625	114.0	6	${ }^{\prime \prime}$					
1626	117.5 121.2	-	150	1657	"	24.3	3050	
$\begin{aligned} & 1628 \\ & 1629 \\ & 1630 \\ & 1631 \\ & 1632 \end{aligned}$	124.9	-	"	1658				
	128.6	-	"	1702	11	25.4	3050	Straight
	132.3	-	"					
	136.0 139.7	-	"	$\begin{aligned} & 1703 \\ & 1712 \end{aligned}$	"	22.3	2740	Run
				$\begin{aligned} & 1713 \\ & 1718 \end{aligned}$	"	18.0	2430	
				$\begin{aligned} & 1719 \\ & 1725 \end{aligned}$	"	16.0	2130	
				$\begin{aligned} & 1726 \\ & 1733 \end{aligned}$	"	13.5	1830	
				$\begin{aligned} & 1734 \\ & 1740 \end{aligned}$	"	11.5	1530	
				$\begin{aligned} & 1741 \\ & 1746 \end{aligned}$	"	-	1220	
				$\begin{aligned} & 1747 \\ & 1753 \end{aligned}$	"	-	920	
				$\begin{aligned} & 1754 \\ & 1759 \end{aligned}$	"	-	600	
				$\begin{aligned} & 1800 \\ & 1807 \end{aligned}$	1	-	300	
				$\begin{aligned} & 1808 \\ & 1815 \end{aligned}$	"	-	150	
				$\begin{aligned} & 1816 \\ & 1822 \end{aligned}$	"	-	150	
GAI/JOB.								

Height-Gain Tests in the Troposphere.
Meteorological Data.

27/1/44.			Pres.	.T.	Hm .	Temp.	29/2/44.		T.	
3050	$27^{\circ} \mathrm{F}$.	64\%	700 mbs .	1500	3050	6	40	677	1300	
2740	29	60	727	"	2740	8	44	705	"	
2430.	32	56	756	"	2430	9	53	734	"	
2130	33	55	785	"	2130	11	58	764	"	
1830	37	58	815	"	1830	14	59	795	"	Spiral
1530	37	70	846	"	1530	16	63	827	"	
1220	41	74	879	"	1220	19	67	860	"	
920	45	77	913	"	920	23	68	894	"	
600	48	81	947	"	600	28	70	929	"	
300	47	81	992	"	300	33	69	964	"	
250	-	-	-	"	150			-	"	Climb
	20/4	$44 .$					$22 / 4 / 4$			
Hm ,	Temp.	Hum.	Pres.	T.	Hm.	Temp.	Hum.	Pres.	T.	
3050	21	46	694	1.430	3050	29	88	706	2450	
2740	23	53	724	"	2740		-	-	11	
2430	25	60	752	"	2430	35	15	762	"	
2130	26	66	782	"	2130	37	15	792	"	
1830	28	71	813	"	1830	38	19	824	"	
1530	30	76	845	"	1530	42	57	855	"	
1220	34	76	878	"	1220	45	39	888	"	
920	39	74	913	"	920	49	30	916	"	
600	45	71	946	"	600	51	59	956	"	
300	47	69	967	"	, 300	57	82	990	"	
150	-	-			150	59	.	1002	"	
	23/4	$44 .$					$25 / 4 / 4$	14		
Hm .	Temp.	Hum.	Pres.	T.	Hm .	Temp.	Hum.	Pres.	T.	
3050	31	55	705	1330	3050	25	64	688	1730	
2740	33	57	730	"	2740	26	63	724	"	
2430	36	42	758	"	2430	27	62	755	"	
2130	37	57	783	"	2130	28	60	788	"	
1830	41	73	815	"	1830	32	60	809	"	
1530	44	84	848	"	1530	34.5	65	848	"	
1220	47	73.	878	"	1220	37	65	873	"	
920	44	93	906	"	920	40	66	910	"	Straight
600	48	85	937	"	600	45.5	64	944	"	Straight
300		-	-	"	300	50.5	62	977	"	
150	-	-	-	"	150	53	61	996	"	Run

Note:- The data for the $27 / 1 / 44$ and $29 / 2 / 44$ was supplied by the Meteorological Office.
The data for the $20 / 4 / 44,22 / 4 / 44,23 / 4 / 44$ and the $25 / 4 / 44$ was obtained from meteorological instruments on the aircraft.

